Gupta, M., Regan, H., Koo, Y., Chua, S. M. T., Li, X., & Heil, P. (2024). Inferring the seasonality of sea ice floes in the Weddell Sea using ICESat-2, EGUsphere [preprint] https://doi.org/10.5194/egusphere-2024-1329
Koo, Y., Cheng, G., Morlighem, M., & Rahnemoonfar, M. (2024). Calibrating calving parameterizations using graph neural network emulators: Application to Helheim Glacier, East Greenland, EGUsphere [preprint] https://doi.org/10.5194/egusphere-2024-1620
Koo, Y., Xie, H., & Ackley, S. F. (2024). Thermodynamic and dynamic variations in sea ice thickness of the Ross Sea, Antarctica, driven by atmospheric circulation. Journal of Geophysical Research: Oceans, 129, e2023JC020622. https://doi.org/10.1029/2023JC020622
Koo, Y., & Rahnemoonfar, M. (2024). Graph convolutional network as a fast statistical emulator for numerical ice sheet modeling. Journal of Glaciology, 1–30. https://doi.org/10.1017/jog.2024.93
Koo, Y., & Rahnemoonfar, M. (2024). Hierarchical Information-Sharing Convolutional Neural Network for the Prediction of Arctic Sea Ice Concentration and Velocity. IEEE Transactions on Geoscience and Remote Sensing, 62, 4303313, 1-13. https://doi.org/10.1109/TGRS.2024.3501094
Koo, Y., Xie, H., Kurtz, N. T., Ackley, S. F., & Wang, W. (2023). Sea ice surface type classification of ICESat-2 ATL07 data by using data-driven machine learning model: Ross Sea, Antarctic as an example. Remote Sensing of Environment, 296, 113726. https://doi.org/10.1016/j.rse.2023.113726
Koo, Y., Xie, H., Mahmoud, H., Iqrah, J. M., & Ackley, S. F. (2023). Automated detection and tracking of medium-large icebergs from Sentinel-1 imagery using Google Earth Engine. Remote Sensing of Environment, 296, 113731. https://doi.org/10.1016/j.rse.2023.113731
Koo, Y., Lei, R., Cheng, Y., Cheng, B., Xie, H., Hoppmann, M., & Mestas-Nuñez, A. M. (2021). Estimation of thermodynamic and dynamic contributions to sea ice growth in the Central Arctic using ICESat-2 and MOSAiC SIMBA buoy data. Remote Sensing of Environment, 267, 112730. https://doi.org/10.1016/j.rse.2021.112730
Sha, D., Koo, Y., Miao, X., Srirenganathan, A., Lan, H., Biswas, S., & Yang, C. (2021). Spatiotemporal Analysis of Sea Ice Leads in the Arctic Ocean Retrieved from IceBridge Laxon Line Data 2012–2018. Remote Sensing, 13(20), 4177. https://doi.org/10.3390/rs13204177
Koo, Y., Xie, H., Ackley, S. F., Mestas-Nuñez, A. M., Macdonald, G. J., & Hyun, C. U. (2021). Semi-automated tracking of iceberg B43 using Sentinel-1 SAR images via Google Earth Engine. The Cryosphere, 15(10), 4727-4744. https://doi.org/10.5194/tc-15-4727-2021
Koo, Y., Xie, H., Kurtz, N. T., Ackley, S. F., & Mestas-Nuñez, A. M. (2021). Weekly Mapping of Sea Ice Freeboard in the Ross Sea from ICESat-2. Remote Sensing, 13(16), 3277. https://doi.org/10.3390/rs13163277
Koo, Y., Oh, M., Kim, S. M., & Park, H. D. (2020). Estimation and mapping of solar irradiance for korea by using COMS MI satellite images and an artificial neural network model. Energies, 13(2), 301. https://doi.org/10.3390/en13020301
Koo, Y., Kim, S. M., Oh, M., & Park, H. D. (2019). Estimation of solar irradiance at weather stations in Korea using regionally trained artificial neural network models. Journal of the Korean Society of Mineral and Energy Resources Engineers, 56(2), 155-171. (in Korean) https://doi.org/10.32390/ksmer.2019.56.2.155
Oh, M. C., Kim, S. M., Koo, Y., & Park, H. D. (2018). Analysis of photovoltaic potential and selection of optimal site near gumdeok mine, North Korea. Journal of the Korean Society for New and Renewable Energy, 14(3), 44-53. (in Korean) https://doi.org/10.7849/ksnre.2018.9.14.3.044
Koo, Y., Kim, S. M., Oh, M., & Park, H. D. (2018). Landslide risk assessment at the gumdeok mine in North Korea using satellite images and GIS spatial data. Journal of the Korean Society of Mineral and Energy Resources Engineers, 55(4), 259-271. (in Korean) https://doi.org/10.32390/ksmer.2018.55.4.259
This website uses cookies.
We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.